Two graded rings of Hermitian modular forms

نویسندگان

چکیده

Abstract We give generators and relations for the graded rings of Hermitian modular forms degree two over integers in $${\mathbb {Q}}(\sqrt{-7})$$ Q ( - 7 ) {Q}}(\sqrt{-11})$$ 11 . In both cases we prove that subrings symmetric are generated by Maass lifts. The computation uses a reduction process against Borcherds products which also leads to dimension formula spaces forms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes over rings, complex lattices and Hermitian modular forms

We introduce the finite ring S2m = Z2m + iZ2m . We develop a theory of self-dual codes over this ring and relate self-dual codes over this ring to complex unimodular lattices. We describe a theory of shadows for these codes and lattices. We construct a gray map from this ring to the ring Z2m and relate codes over these rings, giving special attention to the case when m = 2. We construct various...

متن کامل

Hermitian modular forms congruent to 1

For any natural number l and any prime p ≡ 1 (mod 4) not dividing l there is a Hermitian modular form of arbitrary genus n over L := Q[ √ −l] that is congruent to 1 modulo p which is a Hermitian theta series of an OL-lattice of rank p− 1 admitting a fixed point free automorphism of order p. It is shown that also for non-free lattices such theta series are modular forms.

متن کامل

Almost power-Hermitian rings

In this paper we define a new type of rings ”almost powerhermitian rings” (a generalization of almost hermitian rings) and establish several sufficient conditions over a ring R such that, every regular matrix admits a diagonal power-reduction.

متن کامل

On the graded ring of Siegel modular forms of degree

The aim of this paper is to give the dimension of the space of Siegel modular forms M k (Γ(3)) of degree 2, level 3 and weight k for each k. Our main result is Theorem dim M k (Γ(3)) = 1 2 (6k 3 − 27k 2 + 79k − 78) k ≥ 4. In other words we have the generating function : ∞ k=0 dim M k (Γ(3))t k = 1 + t + t 2 + 6t 3 + 6t 4 + t 5 + t 6 + t 7 (1 − t) 4. About the space of cusp forms, the dimension ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg

سال: 2021

ISSN: ['1865-8784', '0025-5858']

DOI: https://doi.org/10.1007/s12188-021-00245-z